This documentation is automatically generated by online-judge-tools/verification-helper
#include "fps/FPS_Boston_Mori.hpp"
T Boston_Mori(long long k, std::vector<T> P, std::vector<T> Q)
$x^{k}$ を返す関数
$N = \max( | P | , | Q | )$ として、 $O(N\log(N)\log(k))$ |
$Q(x)$ の DFT から $Q(-x)$ の DFT が簡単に求まることや、偶奇の取り出し、$0$ 詰めなどの高速化を行なっている。
T Kth_Linear(long long k, std::vector<T> a, std::vector<T> c)
$ | a | = d, | c | = d + 1$ を満たす数列 $a, c$ を用いて、以下を満たす正整数列 $b$ の $k$ 項目を求める。 |
計算量は $O(d\log(d)\log(k))$
#pragma once
#include <vector>
#include <atcoder/convolution>
#include <cassert>
#include "FPS_extend.hpp"
#include "FPS_pick_even_odd.hpp"
namespace po167{
// return [x^k] P(x) / Q(x)
template<class T>
T Boston_Mori(long long k, std::vector<T> P, std::vector<T> Q){
assert(!Q.empty() && Q[0] != 0);
int z = 1;
while (z < (int)std::max(P.size(), Q.size())) z *= 2;
P.resize(z * 2, 0);
Q.resize(z * 2, 0);
atcoder::internal::butterfly(P);
atcoder::internal::butterfly(Q);
// fast
while (k){
// Q(-x)
std::vector<T> Q_n(z * 2);
for (int i = 0; i < z; i++){
Q_n[i * 2] = Q[i * 2 + 1];
Q_n[i * 2 + 1] = Q[i * 2];
}
for (int i = 0; i < z * 2; i++){
P[i] *= Q_n[i];
Q[i] *= Q_n[i];
}
FPS_pick_even_odd(P, k & 1);
FPS_pick_even_odd(Q, 0);
k /= 2;
if (k == 0) break;
FPS_extend(P);
FPS_extend(Q);
}
T SP = 0, SQ = 0;
for (int i = 0; i < z; i++) SP += P[i], SQ += Q[i];
return SP / SQ;
// simple
/*
while (k){
auto n_Q = Q;
for (int i = 0; i < int(Q.size()); i++){
if (i & 1) n_Q[i] *= -1;
}
auto n_P = atcoder::convolution(P, n_Q);
n_Q = atcoder::convolution(Q, n_Q);
for (int i = 0; i < int(Q.size()); i++){
Q[i] = n_Q[i * 2];
}
P.clear();
for (int i = (k & 1); i < int(n_P.size()); i += 2){
P.push_back(n_P[i]);
}
k >>= 1;
}
return P[0] / Q[0];
*/
}
template<class T>
// 0 = a[i] * c[0] + a[i - 1] * c[1] + a[i - 2] * c[2] + ... + a[i - d] * c[d]
// a.size() + 1 == c.size()
// c[0] = - 1 ?
// return a[k]
T Kth_Linear(long long k, std::vector<T> a, std::vector<T> c){
int d = a.size();
assert(d + 1 == int(c.size()));
std::vector<T> P = atcoder::convolution(a, c);
P.resize(d);
return Boston_Mori(k, P, c);
}
};
#line 2 "fps/FPS_Boston_Mori.hpp"
#include <vector>
#include <atcoder/convolution>
#include <cassert>
#line 4 "fps/FPS_extend.hpp"
namespace po167{
// in : DFT(v) (len(v) = z)
// out : DFT(v) (len(v) = 2 * z)
template<class T>
void FPS_extend(std::vector<T> &v){
int z = v.size();
T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z));
auto cp = v;
atcoder::internal::butterfly_inv(cp);
T tmp = (T)(1) / (T)(z);
for (int i = 0; i < z; i++){
cp[i] *= tmp;
tmp *= e;
}
atcoder::internal::butterfly(cp);
for (int i = 0; i < z; i++) v.push_back(cp[i]);
};
}
#line 3 "fps/FPS_pick_even_odd.hpp"
namespace po167{
// s.t |v| = 2 ^ s (no assert)
template<class T>
void FPS_pick_even_odd(std::vector<T> &v, int odd){
int z = v.size() / 2;
T half = (T)(1) / (T)(2);
if (odd == 0){
for (int i = 0; i < z; i++){
v[i] = (v[i * 2] + v[i * 2 + 1]) * half;
}
v.resize(z);
} else {
T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z));
T ie = T(1) / e;
std::vector<T> es = {half};
while ((int)es.size() != z){
std::vector<T> n_es((int)es.size() * 2);
for (int i = 0; i < (int)es.size(); i++){
n_es[i * 2] = (es[i]);
n_es[i * 2 + 1] = (es[i] * ie);
}
ie *= ie;
std::swap(n_es, es);
}
for (int i = 0; i < z; i ++){
v[i] = (v[i * 2] - v[i * 2 + 1]) * es[i];
}
v.resize(z);
}
}
}
#line 7 "fps/FPS_Boston_Mori.hpp"
namespace po167{
// return [x^k] P(x) / Q(x)
template<class T>
T Boston_Mori(long long k, std::vector<T> P, std::vector<T> Q){
assert(!Q.empty() && Q[0] != 0);
int z = 1;
while (z < (int)std::max(P.size(), Q.size())) z *= 2;
P.resize(z * 2, 0);
Q.resize(z * 2, 0);
atcoder::internal::butterfly(P);
atcoder::internal::butterfly(Q);
// fast
while (k){
// Q(-x)
std::vector<T> Q_n(z * 2);
for (int i = 0; i < z; i++){
Q_n[i * 2] = Q[i * 2 + 1];
Q_n[i * 2 + 1] = Q[i * 2];
}
for (int i = 0; i < z * 2; i++){
P[i] *= Q_n[i];
Q[i] *= Q_n[i];
}
FPS_pick_even_odd(P, k & 1);
FPS_pick_even_odd(Q, 0);
k /= 2;
if (k == 0) break;
FPS_extend(P);
FPS_extend(Q);
}
T SP = 0, SQ = 0;
for (int i = 0; i < z; i++) SP += P[i], SQ += Q[i];
return SP / SQ;
// simple
/*
while (k){
auto n_Q = Q;
for (int i = 0; i < int(Q.size()); i++){
if (i & 1) n_Q[i] *= -1;
}
auto n_P = atcoder::convolution(P, n_Q);
n_Q = atcoder::convolution(Q, n_Q);
for (int i = 0; i < int(Q.size()); i++){
Q[i] = n_Q[i * 2];
}
P.clear();
for (int i = (k & 1); i < int(n_P.size()); i += 2){
P.push_back(n_P[i]);
}
k >>= 1;
}
return P[0] / Q[0];
*/
}
template<class T>
// 0 = a[i] * c[0] + a[i - 1] * c[1] + a[i - 2] * c[2] + ... + a[i - d] * c[d]
// a.size() + 1 == c.size()
// c[0] = - 1 ?
// return a[k]
T Kth_Linear(long long k, std::vector<T> a, std::vector<T> c){
int d = a.size();
assert(d + 1 == int(c.size()));
std::vector<T> P = atcoder::convolution(a, c);
P.resize(d);
return Boston_Mori(k, P, c);
}
};